Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Metallomics ; 16(1)2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38183290

RESUMEN

Currently, cisplatin resistance remains a primary clinical obstacle in the successful treatment of non-small cell lung cancer. Here, we designed, synthesized, and characterized two novel cyclometalated Ru(II) complexes, [Ru(bpy)2(1-Ph-7-OCH3-IQ)] (PF6) (bpy = 2,2'-bipyridine, IQ = isoquinoline, RuIQ7)and [Ru(bpy)2(1-Ph-6,7-(OCH3)2-IQ)] (PF6) (RuIQ8). As experimental controls, we prepared complex [Ru(bpy)2(1-Ph-IQ)](PF6) (RuIQ6) lacking a methoxy group in the main ligand. Significantly, complexes RuIQ6-8 displayed higher in vitro cytotoxicity when compared to ligands, precursor cis-[Ru(bpy)2Cl2], and clinical cisplatin. Mechanistic investigations revealed that RuIQ6-8 could inhibit cell proliferation by downregulating the phosphorylation levels of Akt and mTOR proteins, consequently affecting the rapid growth of human lung adenocarcinoma cisplatin-resistant cells A549/DDP. Moreover, the results from qRT-PCR demonstrated that these complexes could directly suppress the transcription of the NF-E2-related factor 2 gene, leading to the inhibition of downstream multidrug resistance-associated protein 1 expression and effectively overcoming cisplatin resistance. Furthermore, the relationship between the chemical structures of these three complexes and their anticancer activity, ability to induce cell apoptosis, and their efficacy in overcoming cisplatin resistance has been thoroughly examined and discussed. Notably, the toxicity test conducted on zebrafish embryos indicated that the three Ru-IQ complexes displayed favorable safety profiles. Consequently, the potential of these developed compounds as innovative therapeutic agents for the efficient and low-toxic treatment of NSCLC appears highly promising.


Asunto(s)
2,2'-Dipiridil/análogos & derivados , Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Complejos de Coordinación , Neoplasias Pulmonares , Compuestos Organometálicos , Rutenio , Animales , Humanos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/patología , Rutenio/química , Factor 2 Relacionado con NF-E2/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Pulmonares/patología , Pez Cebra/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Antineoplásicos/química , Línea Celular Tumoral , Complejos de Coordinación/farmacología , Complejos de Coordinación/uso terapéutico
2.
Artículo en Inglés | MEDLINE | ID: mdl-38064617

RESUMEN

Objective: This study aimed to investigate the specific neurological mechanisms underlying the effects of electroacupuncture at Shenmen (Heart 7) with Neiguan (Pericardium 6) acupoints in patients with primary insomnia (PI). We sought to understand these mechanisms by comparing changes in areaal homogeneity (ReHo) before and after treatment in PI patients and healthy controls (HC). Methods: Between November 2019 and November 2021, we recruited 17 primary insomnia patients (PI group) and 20 matched healthy controls (HC group) as study subjects from Zhaoqing First People's Hospital. Before electroacupuncture treatment, all participants completed the Pittsburgh Sleep Quality Index (PSQI), Hamilton Depression Rating Scale (HAMD), and Hamilton Anxiety Rating Scale (HAMA) assessments. Resting-state magnetic resonance imaging (MRI) scans were conducted before and after two sessions of electroacupuncture at Shenmen and Neiguan acupoints. Results: Before treatment, primary insomnia patients showed higher PSQI (χ2=1.964; P = .017), HAMA (χ2=2.016; P = .027), and HAMD scores (χ2=2.367; P = .013) compared to healthy controls, and increased ReHo values were observed in the left amygdala, bilateral middle temporal gyrus, and left posterior cingulate gyrus in PI patients, while decreased ReHo values were found in the left posterior cingulate gyrus, right middle frontal gyrus, and right precuneus. After treatment, ReHo values increased in the left superior frontal gyrus, right parahippocampal gyrus, and right cingulate gyrus, while they decreased in the left amygdala and right angular gyrus. Primary insomnia disrupts brain areas in the default network, salience network, and parts of the affective cognitive network. Conclusion: Electroacupuncture at Shenmen and Neiguan acupoints partially activated impaired brain areas in patients with primary insomnia, leading to improvements in mental status and sleep quality. This offers a novel perspective for the clinical treatment of primary insomnia.

3.
Front Oncol ; 13: 1142916, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38023195

RESUMEN

Objectives: The present study aims at establishing a noninvasive and reliable model for the preoperative prediction of glypican 3 (GPC3)-positive hepatocellular carcinoma (HCC) based on multiparametric magnetic resonance imaging (MRI) and clinical indicators. Methods: As a retrospective study, the subjects included 158 patients from two institutions with surgically-confirmed single HCC who underwent preoperative MRI between 2020 and 2022. The patients, 102 from institution I and 56 from institution II, were assigned to the training and the validation sets, respectively. The association of the clinic-radiological variables with the GPC3 expression was investigated through performing univariable and multivariable logistic regression (LR) analyses. The synthetic minority over-sampling technique (SMOTE) was used to balance the minority group (GPC3-negative HCCs) in the training set, and diagnostic performance was assessed by the area under the curve (AUC) and accuracy. Next, a prediction nomogram was developed and validated for patients with GPC3-positive HCC. The performance of the nomogram was evaluated through examining its calibration and clinical utility. Results: Based on the results obtained from multivariable analyses, alpha-fetoprotein levels > 20 ng/mL, 75th percentile ADC value < 1.48 ×103 mm2/s and R2* value ≥ 38.6 sec-1 were found to be the significant independent predictors of GPC3-positive HCC. The SMOTE-LR model based on three features achieved the best predictive performance in the training (AUC, 0.909; accuracy, 83.7%) and validation sets (AUC, 0.829; accuracy, 82.1%) with a good calibration performance and clinical usefulness. Conclusions: The nomogram combining multiparametric MRI and clinical indicators is found to have satisfactory predictive efficacy for preoperative prediction of GPC3-positive HCC. Accordingly, the proposed method can promote individualized risk stratification and further treatment decisions of HCC patients.

4.
J Inorg Biochem ; 249: 112397, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37844533

RESUMEN

In this study, we synthesized 4 cyclometalated iridium complexes using N-(1,10-phenanthrolin-5-yl)picolinamide (PPA) as the main ligand, denoted as [Ir(ppy)2PPA]PF6 (ppy = 2-phenylpyridine, Ir1), [Ir(bzq)2PPA]PF6 (bzq = benzo[h]quinoline, Ir2), [Ir(dfppy)2PPA]PF6 (dfppy = 2-(3,5-difluorophenyl)pyridine, Ir3), and [Ir(thpy)2PPA]PF6 (thpy = 2-(thiophene-2-yl)pyridine, Ir4). Compared to cisplatin and oxaliplatin, all four complexes exhibited significant anti-tumor activity. Among them, Ir2 demonstrated higher cytotoxicity against A549 cells, with an IC50 value of 1.6 ± 0.2 µM. The experimental results indicated that Ir2 primarily localized in the mitochondria, inducing a large amount of reactive oxygen species (ROS) generation, that decreased in mitochondrial membrane potential (MMP), reduced ATP production, and further impaired mitochondrial function, leading to cytochrome c release. Additionally, Ir2 caused cell cycle arrest at the S phase and induced apoptosis through the AKT-mediated signaling pathway. Further investigations revealed that Ir2 could simultaneously induce both apoptosis and autophagy in A549 cells, with the latter acting as a non-protective mechanism that promoted cell death. More importantly, Ir2 exhibited low toxicity to both normal LO2 cells in vitro and zebrafish embryos in vivo. Consequently, these newly developed Ir(III) complexes show great potential in the development of novel and low-toxicity anticancer agents.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Animales , Humanos , Células A549 , Iridio/farmacología , Iridio/metabolismo , Pez Cebra , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Apoptosis , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo , Piridinas/farmacología , Autofagia , Complejos de Coordinación/farmacología , Complejos de Coordinación/metabolismo , Línea Celular Tumoral
5.
Front Oncol ; 13: 1134646, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456233

RESUMEN

Objectives: To explore the predictive value of gadoxetic acid-enhanced magnetic resonance imaging (MRI) combined with T1 mapping and clinical factors for Ki-67 expression in hepatocellular carcinoma (HCC). Methods: A retrospective study was conducted on 185 patients with pathologically confirmed solitary HCC from two institutions. All patients underwent preoperative T1 mapping on gadoxetic acid-enhanced MRI. Patients from institution I (n = 124) and institution II (n = 61) were respectively assigned to the training and validation sets. Univariable and multivariable analyses were performed to assess the correlation of clinico-radiological factors with Ki-67 labeling index (LI). Based on the significant factors, a predictive nomogram was developed and validated for Ki-67 LI. The performance of the nomogram was evaluated on the basis of its calibration, discrimination, and clinical utility. Results: Multivariable analysis showed that alpha-fetoprotein (AFP) levels > 20ng/mL, neutrophils to lymphocyte ratio > 2.25, non-smooth margin, tumor-to-liver signal intensity ratio in the hepatobiliary phase ≤ 0.6, and post-contrast T1 relaxation time > 705 msec were the independent predictors of Ki-67 LI. The nomogram based on these variables showed the best predictive performance with area under the receiver operator characteristic curve (AUROC) 0.899, area under the precision-recall curve (AUPRC) 0.946 and F1 score of 0.912; the respective values were 0.823, 0.879 and 0.857 in the validation set. The Kaplan-Meier curves illustrated that the cumulative recurrence probability at 2 years was significantly higher in patients with high Ki-67 LI than in those with low Ki-67 LI (39.6% [53/134] vs. 19.6% [10/51], p = 0.011). Conclusions: Gadoxetic acid-enhanced MRI combined with T1 mapping and several clinical factors can preoperatively predict Ki-67 LI with high accuracy, and thus enable risk stratification and personalized treatment of HCC patients.

6.
J Inorg Biochem ; 247: 112333, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37480763

RESUMEN

The main challenge of cancer chemotherapy is the resistance of tumor cells to oxidative damage. Herein, we proposed a novel antitumor strategy: cyclic metal­ruthenium (Ru) complexes mediate reductive damage to kill tumor cells. We designed and synthesized Ru(II) complexes with ß-carboline as ligands: [Ru (phen)2(NO2-Ph-ßC)](PF6) (RußC-7) and [Ru(phen)2(1-Ph-ßC)](PF6) (RußC-8). In vitro experimental results showed that RußC-7 and RußC-8 can inhibit cell proliferation, promote mitochondrial abnormalities, and induce DNA damage. Interestingly, RußC-7 with SOD activity could reduce intracellular reactive oxygen species (ROS) levels, while RußC-8 has the opposite effect. Accordingly, this study identified the reductive damage mechanism of tumor apoptosis, and may provide a new ideas for the design of novel metal complexes.


Asunto(s)
Complejos de Coordinación , Rutenio , Humanos , Células HeLa , Rutenio/farmacología , Apoptosis , Proliferación Celular , Complejos de Coordinación/farmacología
7.
J Mater Chem B ; 11(27): 6393-6403, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37338269

RESUMEN

Nanozymes are effective novel antibacterial agents. However, they still have some shortcomings such as low catalytic efficiency, poor specificity, and non-negligible toxic side effects. Here, we synthesized iridium oxide nanozymes (IrOx NPs) by a one-pot hydrothermal method and used guanidinium peptide-betaine (SNLP/BS-12) to modify the surface of IrOx NPs (SBI NPs) to obtain a high-efficiency and low-toxicity antibacterial agent. In vitro experiments showed that SBI NPs with SNLP/BS12 could enhance IrOx NPs to target bacteria, mediate bacterial surface catalysis and reduce the cytotoxicity of IrOx NPs to mammalian cells. Importantly, SBI NPs were able to effectively alleviate MRSA acute lung infection and effectively promote diabetic wound healing. Accordingly, iridium oxide nanozymes functionalized with guanidinium peptides are expected to be an effective antibiotic candidate in the postantibiotic era.


Asunto(s)
Infecciones Bacterianas , Staphylococcus aureus Resistente a Meticilina , Animales , Especies Reactivas de Oxígeno , Guanidina/farmacología , Antibacterianos/farmacología , Mamíferos
8.
Molecules ; 28(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37375194

RESUMEN

Photodynamic therapy (PDT) is recognized as a powerful method to inactivate cells. However, the photosensitizer (PS), a key component of PDT, has suffered from undesired photobleaching. Photobleaching reduces reactive oxygen species (ROS) yields, leading to the compromise of and even the loss of the photodynamic effect of the PS. Therefore, much effort has been devoted to minimizing photobleaching in order to ensure that there is no loss of photodynamic efficacy. Here, we report that a type of PS aggregate showed neither photobleaching nor photodynamic action. Upon direct contact with bacteria, the PS aggregate was found to fall apart into PS monomers and thus possessed photodynamic inactivation against bacteria. Interestingly, the disassembly of the bound PS aggregate in the presence of bacteria was intensified by illumination, generating more PS monomers and leading to an enhanced antibacterial photodynamic effect. This demonstrated that on a bacterial surface, the PS aggregate photo-inactivated bacteria via PS monomer during irradiation, where the photodynamic efficiency was retained without photobleaching. Further mechanistic studies showed that PS monomers disrupted bacterial membranes and affected the expression of genes related to cell wall synthesis, bacterial membrane integrity, and oxidative stress. The results obtained here are applicable to other types of PSs in PDT.


Asunto(s)
Isoindoles , Compuestos Organometálicos , Fotoblanqueo , Fotoquimioterapia , Fármacos Fotosensibilizantes , Compuestos de Zinc , Compuestos de Zinc/química , Fármacos Fotosensibilizantes/química , Isoindoles/química , Escherichia coli/efectos de los fármacos , Escherichia coli/efectos de la radiación , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/efectos de la radiación
9.
J Inorg Biochem ; 246: 112295, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37348172

RESUMEN

Two new ruthenium(II) complexes [Ru(dip)2(PPßC)]PF6 (Ru1, dip = 4,7-diphenyl-1,10-phenanthroline, PPßC = N-(1,10-phenanthrolin-5-yl)-1-phenyl-9H-pyrido[3,4-b]indole-3-carboxamide) and [Ru(phen)2(PPßC)]PF6 (Ru2, phen = 1, 10-phenanthroline) with ß-carboline derivative PPßC as the primary ligand, were designed and synthesized. Ru1 and Ru2 displayed higher antiproliferative activity than cisplatin against the test cancer cells, with IC50 values ranging from 0.5 to 3.6 µM. Moreover, Ru1 and Ru2 preferentially accumulated in mitochondria and caused a series of changes in mitochondrial events, including the depolarization of mitochondrial membrane potential, the damage of mitochondrial DNA, the depletion of cellular ATP, and the elevation of intracellular reactive oxygen species levels. Then, it induced caspase-3/7-mediated A549 cell apoptosis. More importantly, both complexes could act as topoisomerase I catalytic inhibitors to inhibit mitochondrial DNA synthesis. Accordingly, the developed Ru(II) complexes hold great potential to be developed as novel therapeutics for cancer treatment.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Rutenio , Humanos , Células A549 , Rutenio/farmacología , Rutenio/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Mitocondrias/metabolismo , Apoptosis , ADN Mitocondrial/metabolismo , ADN Mitocondrial/farmacología , Complejos de Coordinación/farmacología , Complejos de Coordinación/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral
10.
Phys Rev E ; 107(4-1): 044118, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37198854

RESUMEN

The Drazin inverse of the Liouvillian superoperator provides a solution to determine the dynamics of a time-dependent system governed by the Markovian master equation. Under the condition of slow driving, the perturbation expansion of the density operator of the system in powers of time can be derived. As an application, a finite-time cycle model of the quantum refrigerator driven by a time-dependent external field is established. The method of the Lagrange multiplier is adopted as a strategy to find the optimal cooling performance. The figure of merit given by the product of the coefficient of performance and the cooling rate is taken as a new objective function, and, consequently, the optimally operating state of the refrigerator is revealed. The effects of the frequency exponent determining dissipation characteristics on the optimal performance of the refrigerator are discussed systemically. The results obtained show that the adjacent areas of the state of the maximum figure of merit are the best operation region of low-dissipative quantum refrigerators.

11.
J Colloid Interface Sci ; 646: 959-969, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37235941

RESUMEN

Supramolecular assemblies fabricated by peptide-photosensitizer conjugates have attracted increasing attentions in recent years as drug carriers for chemotherapeutics (CTs). However, these assemblies have been known to suffer from disintegration by serum components leading to off-target drug release, and thereby impairing antitumor effects and causing systemic toxicities. To address this problem, this study reports a nano-architectural self-assembly peptide-photosensitizer carrier (NSPC) fabricated by conjugating a phthalocyanine derivative (MCPZnPc) and ε-poly-l-lysine (EPL). By engineering the core and peripheral interactions, MCPZnPC-EPL (M-E) NSPC firmly encapsulated multiple CTs, creating CT@M-E NSPCs that were highly stable against disintegration in serum. More importantly, CT@M-E NSPCs exhibited controlled release of CTs in tumor tissues. The antitumor effects of CTs were further promoted by the synergism with the reactivated photodynamic effect. Furthermore, M-E NSPC-encapsulation optimized CTs' biodistribution reducing adverse effects in vivo. This study provides a serum-stable supramolecular drug delivery system with photodynamic effect, which is applicable for a broad-range of CTs to promote antitumor effects and ameliorate adverse effects.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Portadores de Fármacos , Distribución Tisular , Sistemas de Liberación de Medicamentos , Péptidos/farmacología , Liberación de Fármacos , Línea Celular Tumoral
12.
Metallomics ; 15(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37204038

RESUMEN

Natural products and metals play a crucial role in cancer research and the development of antitumor drugs. We designed and synthesized three new carboline-based cyclometalated iridium complexes [Ir(C-N)2(PPßC)](PF6), where PPßC = N-(1,10-phenanthrolin-5-yl)-1-phenyl-9H-pyrido[3,4-b]indole-3-carboxamide, C-N = 2-phenylpyridine (ppy, Ir1), 2-(2,4-difluorophenyl) pyridine (dfppy, Ir2), 7,8-benzoquinoline (bzq, Ir3), by combining iridium with ß-carboline derivative. These iridium complexes exhibited high potential antitumor effects after being promptly taken up by A549 cells. Accumulating in mitochondria rapidly and preferentially, Ir1-3 caused a series of changes in mitochondrial events, including the loss of mitochondrial membrane potential, the depletion of cellular ATP, and the elevation of reactive oxygen species, leading to significant death of A549 cells. Moreover, the activation of intracellular caspase pathway and apoptosis was further validated to contribute to iridium complexes-induced cytotoxicity. These novel iridium complexes exerted a prominent inhibitory effect on tumor growth in a three-dimensional multicellular tumor spheroid model.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Complejos de Coordinación , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Iridio/farmacología , Neoplasias Pulmonares/patología , Antineoplásicos/metabolismo , Carbolinas/farmacología , Carbolinas/metabolismo , Apoptosis , Mitocondrias/metabolismo , Complejos de Coordinación/farmacología , Complejos de Coordinación/uso terapéutico , Complejos de Coordinación/metabolismo , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Proliferación Celular
13.
Clin Exp Med ; 23(7): 3767-3780, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37106265

RESUMEN

Anti-PD-1 immunotherapy has been widely applied in patients with some types of lymphoma. Classical Hodgkin's lymphoma (cHL) is highly sensitive to immunotherapy, but non-Hodgkin's lymphoma (NHL) does not show a good response. Studies have indicated that haematopoietic progenitor kinase 1 (HPK1) suppresses T cells and reduces antitumour immunity. Therefore, HPK1 inhibitors may restore and elicit antitumour immune responses and are promising candidate drug targets for cancer immunotherapy. We first explored the Gene Expression Profile Interactive Analysis (GEPIA) database and predicted that HPK1 expression was increased in diffuse large B-cell lymphoma (DLBCL) and associated with Nod-like receptor protein 3 (NLRP3) expression. We investigated whether an HPK1 inhibitor could enhance the tumour response to anti-PD-1 immunotherapy in NHL and the association between HPK1 and NLRP3 expression. Employing shHPK1 and an inhibitor, we demonstrated that the HPK1 inhibitor increased anti-PD-1-mediated T-cell cytotoxicity in BJAB and WSU-DLCL2 cells cocultured with peripheral blood mononuclear cells (PBMCs). HPK1 inhibitor treatment increased PD-1, PD-L1, Bax, p53 and NK-kB expression but decreased NLRP3 expression, indicating that the HPK1 inhibitor promoted apoptosis and blocked the NLRP3 inflammasome pathway to affect anti-PD-1-mediated T-cell cytotoxicity. Moreover, the HPK1 inhibitor enhanced the efficiency of anti-PD-1 immunotherapy in vivo in a zebrafish xenograft model of NHL. In summary, this study provides evidence that an HPK1 inhibitor enhanced the tumour response to anti-PD-1 immunotherapy in NHL by promoting apoptosis and blocking the NLRP3 pathway. These findings provide a potential therapeutic option for NHL combining HPK1 inhibitor treatment and anti-PD-1 immunotherapy.


Asunto(s)
Enfermedad de Hodgkin , Inhibidores de Puntos de Control Inmunológico , Linfoma no Hodgkin , Animales , Humanos , Inmunoterapia , Leucocitos Mononucleares/metabolismo , Linfoma no Hodgkin/tratamiento farmacológico , Proteína con Dominio Pirina 3 de la Familia NLR , Pez Cebra , Inhibidores de Puntos de Control Inmunológico/uso terapéutico
14.
Cancer Lett ; 563: 216181, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37086953

RESUMEN

P-glycoprotein (P-gp/ABCB1)-mediated multidrug resistance (MDR) in cancers severely limit chemotherapeutic efficacy. We recently reported that phosphatidylinositol-3-kinase (PI3K) 110α and 110ß subunits can be novel targets for reversal of P-gp mediated MDR in cancers, and BAY-1082439 as an inhibitor specific for PI3K 110α and 110ß subunits could reverse P-gp-mediated MDR by downregulating P-gp expression in cancer cells. However, BAY-1082439 has very low solubility, short half-life and high in-vivo clearance rate. Till now, nano-system with the functions to target PI3K P110α and P110ß and reverse P-gp mediated MDR in cancers has not been reported. In our study, a tumor targeting drug delivery nano-system PBDF was established, which comprised doxorubicin (DOX) and BAY-1082439 respectively encapsulated by biodegradable PLGA-SH nanoparticles (NPs) that were grafted to gold nanorods (Au NRs) modified with FA-PEG-SH, to enhance the efficacy to reverse P-gp mediated MDR and to target tumor cells, further, to enhance the efficiency to inhibit MDR tumors overexpressing P-gp. In-vitro experiments indicated that PBDF NPs greatly enhanced uptake of DOX, improved the activity to reverse MDR, inhibited the cell proliferation, and induced S-phase arrest and apoptosis in KB-C2 cells, as compared with free DOX combining free BAY-1082439. In-vivo experiments further demonstrated that PBDF NPs improved the anti-tumor ability of DOX and inhibited development of KB-C2 tumors. Notably, the metastasis of KB-C2 cells in livers and lungs of nude mice were inhibited by treatment with PBDF NPs, which showed no obvious in-vitro or in-vivo toxicity.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Ratones , Antineoplásicos/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Línea Celular Tumoral , Doxorrubicina/farmacología , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Ratones Desnudos , Neoplasias/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Humanos
15.
Water Res ; 235: 119907, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37001232

RESUMEN

The influence of influent species immigration (ISI) on membrane fouling behaviors of membrane bioreactors (MBRs) treating municipal wastewater remains elusive, leading to an incomprehensive understanding of fouling ecology in MBRs. To address this issue, two anoxic/aerobic MBRs, which were fed with raw (named MBR-C) and sterilized (MBR-E) municipal wastewater, were operated. Compared with the MBR-E, the average fouling rate of the MBR-C was lowered by 30% over the long-term operation. In addition, the MBR-E sludge had significantly higher unified membrane fouling index and biofilm formation potential than the MBR-C sludge. Considerably larger flocs size and lower soluble microbial products (SMP) concentrations were observed in the MBR-C than in the MBR-E. Moreover, the 16S rRNA gene sequencing results showed that highly diverse and abundant populations responsible for floc-forming, hydrolysis/fermentation and SMP degradation readily inhabited the influent, shaping a unique microbial niche. Based on species mass balance-based assessment, most of these populations were nongrowing and their relative abundances were higher in the MBR-C than in the MBR-E. This suggested an important contribution of the ISI on the assemblage of these bacteria, thus supporting the increased flocs size and lowered SMP concentrations in the MBR-C. Moreover, the SMP-degrading related bacteria and functional pathways played a more crucial role in the MBR-C ecosystem as revealed by the bacterial co-occurrence network and Picrust2 analysis. Taken together, this study reveals the positive role of ISI in fouling mitigation and highlights the necessity for incorporating influent wastewater communities for fouling control in MBR plants.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , ARN Ribosómico 16S , Ecosistema , Emigración e Inmigración , Membranas Artificiales , Reactores Biológicos , Bacterias
16.
Sci Total Environ ; 873: 162448, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36828058

RESUMEN

Elucidating community assembly and succession is crucial to understanding the ecosystem functioning. Herein, the ecological processes underpinning community assembly and succession were studied to uncover the respective ecological functions of attached biofilms and suspended biomass in a sequencing batch moving bed biofilm reactor. Compared with suspended biomass, attached biofilms presented higher relative abundances of Nitrospira (2.94 %) and Nitrosomonas (1.25 %), and contributed to 66.89 ± 11.37 % and 68.11 ± 12.72 % of nitrification and denitrification activities, respectively. The microbial source tracking result demonstrated that early formation of suspended biomass was dominated by the seeding effect of detached biofilms in the start-up period (days 0-30), while self-growth of previous suspended biomass was eventually outcompeted the seeding effect when the reactor stabilized (days 31-120). Null model and ecological network analysis further suggested distinctive ecological processes underpinning the differentiation between attached and suspended communities in the same reactor. Specifically, in the start-up period, positive interactions facilitated early formation of attached (73.84 %) and suspended communities (59.41 %), while homogenous selection (88.89 %) and homogenizing dispersal (65.71 %) governed assembly of attached and suspended communities, respectively. When the reactor stabilized, attached and suspended communities showed low composition turnover as reflected by dominant homogenizing dispersal, while they presented distinctive trends of interspecies interactions. This study sheds light on discrepant ecological processes governing community differentiation of attached biofilms and suspended biomass, which would provide ecological insights into the regulation of hybrid ecosystems.


Asunto(s)
Biopelículas , Ecosistema , Biomasa , Nitrificación , Bacterias , Reactores Biológicos
17.
Cells ; 12(2)2023 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-36672187

RESUMEN

Over the past century, advances in biotechnology, biochemistry, and pharmacognosy have spotlighted flavonoids, polyphenolic secondary metabolites that have the ability to modulate many pathways involved in various biological mechanisms, including those involved in neuronal plasticity, learning, and memory. Moreover, flavonoids are known to impact the biological processes involved in developing neurodegenerative diseases, namely oxidative stress, neuroinflammation, and mitochondrial dysfunction. Thus, several flavonoids could be used as adjuvants to prevent and counteract neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Zebrafish is an interesting model organism that can offer new opportunities to study the beneficial effects of flavonoids on neurodegenerative diseases. Indeed, the high genome homology of 70% to humans, the brain organization largely similar to the human brain as well as the similar neuroanatomical and neurochemical processes, and the high neurogenic activity maintained in the adult brain makes zebrafish a valuable model for the study of human neurodegenerative diseases and deciphering the impact of flavonoids on those disorders.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Animales , Pez Cebra/metabolismo , Flavonoides/farmacología , Flavonoides/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Parkinson/metabolismo , Encéfalo/metabolismo
18.
Sci Total Environ ; 865: 161240, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36587672

RESUMEN

Although evidence suggests the ubiquity of meso- and microplastics (MMPs) in mangrove forests, our knowledge of their bioavailability and risk on mangrove leaves is scarce. Here, we investigated MMP contamination concerning submerged mangrove leaves and herbivorous snails that mainly feed on them from the four mangrove forests located in Beibu Gulf, Guangxi Province, China. Results showed that the MMP abundance on the mangrove leaves ranged from 0.01 ± 0.00 to 0.42 ± 0.15 items cm-2, while it ranged from 0.33 ± 0.21 to 6.20 ± 2.91 items individual-1 in the snails. There were significant positive correlations between snails and leaves regarding the abundance of total MMPs and the proportions of MMPs with the same characteristics. Expanded polystyrene (EPS) that mainly derived from aquaculture rafts, accounted for a major component both on the leaves and in the snails in Shi Jiao (SJ). Both the detection frequency and percentage of larger EPS (2.00-17.50 mm) on the leaves in SJ were higher than other sites. Meanwhile, the detection frequency, abundance and percentage of larger EPS on the leaves had significant positive correlations with those of micro-EPS in the snails. These findings suggested that mangrove leaves may represent a viable pathway for MMPs to enter the herbivorous snails. Larger EPS with higher frequency of occurrence on mangrove leaves were more likely to be encountered and ingested by snail considering its opportunistic feeding behavior. In addition, 11 sensitive genes involved in the processes of metabolism, intestinal mucosal immune systems, and cellular transduction in the snails were significantly suppressed by MMP exposure, which may be potentially used as early biomarkers to indicate the biological effects of MMPs under realistic environmental conditions. Overall, this study provides novel insights into the fate, sources, and biological effects of MMPs on mangrove leaves.


Asunto(s)
Microplásticos , Plásticos , Monitoreo del Ambiente/métodos , China , Humedales , Poliestirenos/análisis
19.
Ecotoxicol Environ Saf ; 241: 113843, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36068765

RESUMEN

Microplastics (MPs), due to their impacts on the ecosystem and their integration into the food web either through trophic transfer or ingestion directly from the ambient environment, are an emerging class of environmental contaminants posing a great threat to marine organisms. Most reports on the toxic effects of MPs exclusively focus on bioaccumulation, oxidative stress, pathological damage, and metabolic disturbance in fish. However, the collected information on fish immunity in response to MPs is poorly defined. In particular, little is known regarding mucosal immunity and the role of mucins. In this study, marine medaka (Oryzias melastigma) larvae were exposed to 6.0 µm beads of polystyrene microplastics (PS-MPs) at three environmentally relevant concentrations (102 particles/L, 104 particles/L, and 106 particles/L) for 14 days. The experiment was carried out to explore the developmental and behavioural indices, the transcriptional profiles of mucins, pro-inflammatory, immune, metabolism and antioxidant responses related genes, as well as the accumulation of PS-MPs in larvae. The results revealed that PS-MPs were observed in the gastrointestinal tract, with a concentration- and exposure time-dependent manner. No significant difference in the larval mortality was found between the treatment groups and the control, whereas the body length of larvae demonstrated a significant reduction at 106 particles/L on 14 days post-hatching. The swimming behaviour of the larvae became hyperactive under exposure to 104 and 106 particles/L PS-MPs. In addition, PS-MP exposure significantly up-regulated the mucin gene transcriptional levels of muc7-like and muc13-like, however down-regulated the mucin gene expression levels of heg1, muc2, muc5AC-like and muc13. The immune- and inflammation and metabolism-relevant genes (jak, stat-3, il-6, il-1ß, tnf-а, ccl-11, nf-κb, and sod) were significantly induced by PS-MPs at 104 and 106 particles/L compared to the control. Taken together, this study suggests that PS-MPs induced inflammation response and might obstruct the immune functions and retarded the growth of the marine medaka larvae even at environmentally relevant concentrations.


Asunto(s)
Oryzias , Contaminantes Químicos del Agua , Animales , Ecosistema , Inmunidad , Inflamación , Larva , Microplásticos/toxicidad , Mucinas/genética , Mucinas/metabolismo , Oryzias/metabolismo , Plásticos/toxicidad , Poliestirenos/metabolismo , Poliestirenos/toxicidad , Natación , Contaminantes Químicos del Agua/análisis
20.
Biomater Adv ; 135: 212728, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35929206

RESUMEN

ZnO is an important component in skin-protection products and wound-care medicines. However, ZnO's antibacterial activity is moderate. We developed two types of ZnO microparticles loading with phthalocyanine-type photosensitizers (ZnO/PSs) introducing the photodynamic effects. These photosensitive ZnO microparticles exhibited long-term while moderate antimicrobial effects by continuously releasing Zn2+ ions. The antimicrobial efficacies were remarkably enhanced by triggering the photodynamic antimicrobial effects. Compared to the sole ZnO which showed non-measurable antimicrobial activity at a concentration of 10 mg/L, both ZnO/PSs demonstrated antimicrobial rates ranged 99%-99.99% against Escherichia coli, normal and drug-resistant Staphylococcus aureus. In a dorsal wound infection mouse model, treatment with ZnO/PSs significantly accelerated the wound recovery rates. ZnO/PSs promoted wound healing by a dual effect: 1) the release of Zn2+ ions from ZnO facilitating tissue remodeling; 2) the photodynamic effect efficiently eliminates pathogens avoiding infection. Notably, ZnO/PSs inherited the high biosafety of ZnO without causing noticeable toxicity against erythrocyte and endothelial cells. This study not only provides a highly safe and efficient antimicrobial ZnO material for skin cares and wound modulations, but also proposes a strategy to functionalize ZnO materials.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Óxido de Zinc , Animales , Antibacterianos/farmacología , Células Endoteliales , Escherichia coli , Ratones , Staphylococcus aureus , Óxido de Zinc/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...